In a nutshell: Successive parabolic interpolation

Given a continuous and differentiable real-valued function f of a real variable with three initial approximation of an extremum x_{-2}, x_{-1}, x_{0}. This algorithm uses iteration and interpolating polynomials.

Parameters:
$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the root cannot exceed this value.
$\varepsilon_{\text {abs }} \quad$ The value of the function at the approximation of the root cannot exceed this value.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
3. Reorder the points x_{k-2}, x_{k-1} and x_{k} so that $f\left(x_{k-2}\right) \geq f\left(x_{k-1}\right) \geq f\left(x_{k}\right)$, and if two are equal, try to ensure that the one in the middle is x_{k}.
4. The next approximation to the extremum will be the minimum of the interpolating polynomial that passes through the points $\left(x_{k-2}, f\left(x_{k-2}\right)\right),\left(x_{k-1}, f\left(x_{k-1}\right)\right),\left(x_{k}, f\left(x_{k}\right)\right)$.
Let $x_{k+1} \leftarrow \frac{x_{k}+x_{k-1}}{2}+\frac{1}{2} \frac{\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)\left(x_{k-1}-x_{k-2}\right)\left(x_{k-2}-x_{k}\right)}{\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)\left(x_{k-1}-x_{k-2}\right)+\left(f\left(x_{k-2}\right)-f\left(x_{k-1}\right)\right)\left(x_{k}-x_{k-1}\right)}$.
a. If $f\left(x_{k+1}\right) \geq f\left(x_{k-2}\right)$, there is an issue with this method, so return signalling a failure to converge.
b. If x_{k+1} is not a finite floating-point number, so return signalling a failure to converge.
c. If $\left|x_{k+1}-x_{k}\right|<\varepsilon_{\text {step }}$ and $\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\varepsilon_{\mathrm{ab}}$, return x_{k+1}.
5. Increment k and return to Step 2.

If this method converges, then if $f^{(2)}\left(x_{k+1}\right)>0$, it is a minimum; if $f^{(2)}\left(x_{k+1}\right)<0$, it is a maximum; but if $f^{(2)}\left(x_{k+1}\right) \approx 0$, it could be a maximum, a minimum, or a saddle point.

Convergence

If h is the error, it can be show that the error decreases according to $\mathrm{O}\left(h^{1.3247}\right)$ where the exponent is the real root of $x^{3}-x-1$. This technique is not guaranteed to converge if there is a root, for the points are close to being collinear, causing the next approximation to be arbitrarily far from the previous approximation.

